Supporting Ad-Hoc Queries in an Integrated Clinical Database
Sherry A. Steib?, Richard M. Reichley®, S. Troy McMullin®, Keith A. Marrs?, Thomas C. Bailey?,
Wm. Claiborne Dunagan?, Michael G. Kahn?
aWashington University School of Medicine, St. Louis, Missouri
bThe Jewish Hospital of St. Louis, St. Louis, Missouri

Whether caring for patients or conducting research,
medical decision-makers need access to clinical data.
To fulfill that need, commercial software developers
have produced a wide range of database query tools
that differ greatly in functionality and cost. Generally,
tools that have a greater ability to conceal database
complexity from the user also require more effort for
administrative setup. We describe a cost-effective,
commercially-available query tool that requires no
special setup to perform most simple queries, yet can
be customized to satisfy users’ more complex query-
ing requirements.

INTRODUCTION

BJC Health System is a large network of hospitals,
outpatient/urgent care centers, private clinics, and
long-term care facilities affiliated with the Washing-
ton University School of Medicine. In recent years,
the school’s Section on Medical Informatics has
developed an integrated patient database which
receives data from various hospital information sys-
tems.! These data include patient demographics,
admissions/discharges/transfers, positive microbiol-
ogy cultures, drug orders, drug allergies, dietary
orders, and selected laboratory test results.

For various groups of medical decision-makers, Infor-
matics researchers developed several non-interactive
expert systems that utilize this database. After per-
forming tasks such as microbiology culture
surveillance? or verifying the appropriateness of
patient drug orders?, these systems store their recom-
mendations in the database. Clinical information that
is available for analysis, then, includes data that are
integrated from multiple source systems and informa-
tion generated by the expert systems. For the
researcher, these data are invaluable in answering
important, ad-hoc medical questions and validating
the models upon which new applications depend.4

Researchers also developed personal computer (PC)
applications with which the users could examine the
expert systems’ recommendations and enter addi-
tional related information. Equipped with a graphical

0195-4210/95/$5.00 © 1995 AMIA, Inc.

62

user interface, each application was developed for a
specific group of users focused on a small set of well-
defined tasks. None of these PC applications is robust
enough to support ad-hoc queries, so the users must
request technical assistance in collecting any patient
data necessary for analysis. Providing the users with
tools for accessing and analyzing the database them-
selves would help to maximize the utilization of this
valuable resource.

Some hospitals have developed elaborate tools for
searching, displaying, and analyzing data.> Others
have noted that the cost of integrating commercial
software is small compared to the cost of custom soft-
ware development and maintenance.® To minimize
both the cost of initial development and on-going sup-
port, we chose to utilize a commercial query tool and
to provide custom-developed supporting modules
only where necessary. Structured Query Language
(SQL) based tools such as Microsoft Query, Andyne’s
GQL, and ClearAccess Corporation’s ClearAccess
would all have been acceptable. Microsoft Query was
chosen because it is both cost-effective and integrated
with Microsoft Excel, the spreadsheet application our
users prefer. This inter-operability enables the users to
perform ad-hoc queries and then to easily import the
query results into Excel for analysis.

METHODS

Hospital clinical pharmacists use PC applications
such as word processors and spreadsheets in much of
their work. To enable pharmacists to access and to
analyze the patient data stored in a Sybase database
on a remote server in the Informatics laboratory, we
installed software on their PCs and provided a small
set of custom-developed application programs for
them.

A Novell TCP/IP product (LAN WorkPlace) supports
the network connection between the two computers.
Sybase’s Open Client Net-Library for LAN WorkPlace
enables PC applications to access the remote data-
base. Microsoft Excel for Windows is used for data
analysis. Included in the package with Excel is

Microsoft Query for Windows, an Open Database
Connectivity (ODBC) compliant application that
allows users to perform ad-hoc database queries.
Query can be used either as a stand-alone program or
in combination with Excel. When used with Excel,
Query allows user-selected data to be returned
directly into Excel for analysis. Query works with
many different types of databases and requires a dif-
ferent ODBC driver program for each. Several
Microsoft ODBC drivers are included with Excel. The
SQL Server Driver was needed for our database.

With Microsoft Query, users have three different
methods of performing queries:

1. Users can specify the query graphically, as shown
in Figure 1. This method works well for simple
queries and is the most frequently used method.

2. Users can enter and execute SQL programming
language statements. Since the pharmacists are not
SQL programmers, they do not write their own
SQL programs. However, Informatics researchers
can provide them with text files containing SQL
statements, which the users can import into Query.

3. Users can execute stored procedures, which are
SQL programs that are stored in the database.
Stored procedures enable users to perform more
complex queries than either of the other two meth-
ods. A small number of these procedures were
developed by Informatics researchers.

=) G

Regardless of which method of performing queries is
used, it is important that the users have some under-
standing of the database structure. Although they were
technically inclined and highly motivated, the phar-
macists were not familiar with relational database
concepts. To facilitate their learning process, we dia-
grammed the database schema, created a small num-
ber of views and stored procedures, and taught them
how to use Query. To maintain data security, all
access privileges to the tables, views, and stored pro-
cedures are controlled by the Sybase database admin-
istrator.

RESULTS

Many queries are relatively straightforward and can
be performed using the first query method.

A graphical query example

Figure 1 shows a typical example of the output from
this type of query. In the figure, the Query window is
split horizontally into three “panes.” The Table pane
at the top shows which tables or views the user chose
to include in the query. Each table is represented by a
box with the table name at the top. The names of the
columns in each table are listed below the table name;
the user adds a column to the output by clicking its
name. After choosing the tables and columns, the user
must establish how the tables are to be joined. Lines
connect the names of columns that are joined. Inner,
outer, and self-joins are supported. Query automati-

Three window panes

Table pane

The user chose which
tables (boxes) to be
included in the query
and how those tables
were to be joined
(lines).

Criteria pane

The user defined this
criteria for selecting
the rows.

Data pane
The query returned
these rows of data.

Figure 1: A simple query performed with Microsoft Query

cally creates default join lines by inner joining col-
umns that are primary keys in one table with columns
in another table that have the same name and data
type. The user can delete or change the default joins.

The middle pane, or Criteria pane, allows the user to
define criteria for retrieving a subset of rows.
Although the process of defining the criteria is not
shown in the figure, it consists of creating one or more
expressions. These expressions are combinations of
operators, identifiers, functions, and literal values that
evaluate to a single value. The rows that are returned
by the query must satisfy all the conditions shown in
the criteria pane. In the example, two expressions are
shown: (1) Admit_Date must be after 12PM, 4/5/95,
and (2) Drug_Name must start with ‘GENTAMICIN’.

After choosing the tables and columns, drawing the
join lines, defining the criteria, and specifying a sort
order, the user can perform the query. Like many
other data access tools, Query first converts the user’s
query specification into an SQL select statement
before executing it. The SQL statement can be dis-
played, modified, or saved to a file--a useful debug-
ging feature. In this example, the SQL statement is:

SELECT
Registration.Reg_No,
Drug.Drug_Code, Start_Date, Drug_Name
FROM
Registration, Drug, Drug_Names
WHERE
Drug.Reg_No=Registration.Reg_No and
Drug_Names.Drug_Code=Drug.Drug_Code and
Registration.Admit_Date>='4/5/95 12:00' and
Drug_Name like 'GENTAMICIN%'

The Data pane at the bottom of the window displays
the rows of data that the query returned: four selected
columns of information about gentamicin orders for
all patients admitted after 12PM, 4/5/95. Due to data-
sharing schemes such as Microsoft’s Dynamic Data
Exchange (DDE) and Object Linking and Embedding
(OLE), the query results can easily be exported
directly to a word processor or spreadsheet. The
graphical query specification can be saved to a file for
later re-use.

A stored procedure query example

Query supports several different types of joins, a wide
range of operators and expressions, and a number of
other features that cannot be described here. However,
all queries cannot be specified graphically due to
Query limitations or restrictions. An outer join, for

64

example, cannot be used in a query with more than
two tables. The creation of subqueries, or “sub-select”
statements, is not allowed. Complex nested condi-
tional logic is also difficult, if not impossible, to spec-
ify graphically.

The second query method, whereby users enter (or
import) queries as SQL statements, was intended for
these much more difficult queries. This method allows
the user to take full advantage of the power and
expressiveness of the SQL language. Since the phar-
macists are not SQL programmers and importing text
files is cumbersome, this method is rarely used.
Instead, we identified a number of these very difficult
queries that users need to perform regularly and we
implemented them as stored procedures. For maxi-
mum flexibility, the procedures were designed to
accept parameters and to return most of the columns
from any table used in the query. Although the stored
procedures are all too long to be listed here, an exam-
ple of the type of query they perform can be
described.

Pharmacists typically need to know which patients are
being given a particular drug. Sometimes, they are
also interested in knowing the patient’s room number
and the result of any serum creatinine lab test that has
been performed. When monitoring current patient
drug orders, they are interested in up-to-date informa-
tion. For a retrospective study, they are interested in
older information. In either case, two aspects of this
query cause it to be complex. First, the absence of a
lab result should not prevent the drug order from
being listed; this requires an outer join to be per-
formed. Second, several tables are involved and all of
them contain temporal information such as starting
and ending dates. Complex conditional logic is
required to ensure that the proper data is selected.
Represented on a time-line, the data for one patient
might appear as follows:

In this example, a drug order was in effect from time
T2 until T5. The patient was assigned to one room
from T1 until T2, to a second room from T2 until T4,

and to a third room from T4 until T5. Three lab tests
were performed at T1, T2, and TS. Performing a query
that shows only the relevant information at time T3 is
not a trivial task.

A much more difficult query returned the patient’s
maximum serum creatinine test results during various
time intervals, as well as an indicator of whether the
patient had an active order for several other drugs
within the same time period. This type of query is dif-
ficult even for an experienced SQL programmer to
specify and cannot be performed with a single select
statement. Rather, a temporary table is usually created
and a series of updates on it is performed. This allows
one to split the complex conditional logic into

acist analyzing output from th

DoseChecker can easily produce the

yram on the right, which shows dosage

s during October, 1994. Half the dosing
vere for ceftazidime, ranitidine, o1 E
n. This information can be used to

ention on specific drugs with the greatest

D I dosing errors
y 23 Patlents on Gentamicin During October 1994
& \
\
3
ked bar graph on the right shows the

f patient drug orders monitored by
ker from 9/19/94 to 3/31/95. Plotted by
of orders for

those

rvice, the total number
vice 1s easily compared to orders
containing potential dosing errors. This

1on can be used to educate appropriate

smaller, more manageable pieces, overcome Query’s
outer join limitation, and perform subqueries where
needed. To further simplify both the stored procedure
and the users’ graphical queries, a view was created
which allowed serum creatinine test results to be
selected from the lab test results table without speci-
fying individual test and battery numbers.

DISCUSSION

With Excel, Query, and the database views and stored
procedures that were created to support them, the
valuable information contained in the integrated
patient database is now accessible to the pharmacists.
The charts in Figure 2 illustrate several types of anal-

Dosage Violations for October 1994

P M 00

e
The pie chart on the left shows length of stay
(LOS) for patients given gentamicin during
Octot 1994. A little less than half the 523
patients were in the hospital longer than 4 days.

Additional investigation would be performed to
correlate the orders to the patient’s diagnosis.

Dosing Violations by Service
9/19/94 - 3/31/95

3

ﬂﬂﬂﬂ“ﬂmnnnﬂm’

10000 15000 500 25
Patient Drug Orders

Figure 2: A few data analysis tasks that can now be performed by the pharmacy users

65

yses they are able to perform on data returned from
their queries. At this writing, they are particularly
interested in the output from an expert system named
DoseChecker’, which monitors patient drug orders
and issues an alert when it detects an inappropriate
dosage. Data for the top two charts are easily obtained
from a query that the user specifies graphically; data
for the bottom chart must be obtained by executing a
stored procedure. After realizing the utility of the
database, other users have begun to request similar
access to it. To accommodate them, Excel and Query
have been installed on additional PCs and Apple
Macintoshes and a commercial natural language
query interface is also being integrated.

With direct access to the data and tools for analyzing
it, the pharmacists can facilitate decision-making,
simplify many of their routine tasks, and complete a
large number of projects that had formerly been diffi-
cult. For example, both the tasks of drug usage evalu-
ation (DUE) and the monitoring of effects due to
changes in various hospital policies once required
help from the Information Systems department. Now
the pharmacists accomplish these tasks without assis-
tance, and in much less time than before. Other hospi-
tal pharmacies have used similar software packages,
but none has reported the ability to automatically
import ad-hoc query output into a spreadsheet for
analysis. Rather, the data are either manually-entered
or reside in ASCII text files created by mainframe
programs that run at a specific time of day7. These
files are then transferred from the mainframe to the
PC and manually imported into a spreadsheet.g'9

Many factors must be considered when choosing a
query tool: cost, vendor support, skills required of the
user, effort to setup and administer, extent to which
end-user access can be controlled, portability across
computing platforms, kinds of databases that can be
accessed, and degree of integration with other desktop
software. Since a query tool’s purpose is to help users
extract information from databases, two of the most
important factors are ease of use and ability to handle
complicated queries. Many commercial query tools
are available to meet the users’ needs and compara-
tive reviews have been reported.'? Those that require
less setup and administration usually do a poorer job
of concealing the complexity of the database from the
user. This 1s an important issue for two reasons. It
makes queries more difficult to perform and increases
the likelihood that a user will mistakenly perform a
query that returns a significant amount of data--lead-
ing to a degradation of system performance for all
users.

66

The temporal nature of clinical data mandates the use
of complex conditional logic and outer joins for some
queries. More frequently, however, simpler query
logic is sufficient. One tool that meets all users’
requirements is unlikely to be available in the near
future. For now, experience shows that combining a
well-rounded user interface that makes most queries
easy to perform with customized software that simpli-
fies the remainder is a good compromise.

ACKNOWLEDGMENTS

This work is supported by NLM Grant R29
LMO05387, NLM Grant U0O1 LMO05845, and funding
from the Barnes Hospital Department of Pharmacy.

Reference

1. Marrs KA, Steib SA, Abrams CA, Kahn MG.
Unifying heterogeneous distributed clinical data
in a relational database. SCAMC 1993;17:644-
648.

2. Kahn MG, Steib SA, Fraser VJ, Dunagan WC.
An expert system for culture-based infection con-
trol surveillance. SCAMC 1993;17:171-175.

3. Abrams CA, Steib SA, Marrs KA, Jepson K,
Kahn MG. An expert system for appropriately
dosing renally excreted drugs. Submitted for pub-
lication 1995.

4. Stevens LE, Huff SM, Haug PJ. The development
of a virtual database to provide on-line access to a
large archive of clinical data. SCAMC
1992;16:600-604.

5. Safran C, Porter D, Rury CD, et. al. ClinQuery:
Searching a large clinical database. MD Comput-
ing 1990;7(3):144-153.

6. Clayton PD, Anderson RK, Hill C, McCormack
M. An initial assessment of the cost and utiliza-
tion of the Integrated Academic Information Sys-
tem (IAIMS) at Columbia Presbyterian Medical
Center. SCAMC 1991;15:109-113.

7. Mason RN, Pugh CB, Boyer SB, Stiening KK.
Computerized documentation of pharmacists’
interventions. Am J Hosp Pharm 1994;51:2131-
2138.

8. Burnakis TG. Translating mainframe computer
data to spreadsheet format. Am J Hosp Pharm
1991;48:2619-2622.

9. Smith SL, Lubiejewski T, Farnum J. Spreadsheet
interface for transfer of drug-use data from a
mainframe to a personal computer. Am J Hosp
Pharm 1990;47:2488-2492.

10. Tyo, J. Query tools help users dip into data. Infor-
mationWeek 1995;April 10:54-62.

